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Electrodynamic trap for neutral atoms
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Abstract. An electrodynamic trap is proposed that stores cold neutral atoms or nonpolar molecules in
their ground state as well as in excited states by means of the quadratic Stark effect. The trap uses an
oscillating hexapole field and a superposed static homogeneous field. The dynamics of an atom in this
trap can be described as a harmonic oscillation in a static pseudopotential. Stability criteria and sample
parameters for a number of atomic species are given.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 32.60.+i Zeeman and Stark effects

1 Introduction

Traps for atoms and ions have become an important ex-
perimental tool. They allow long interaction times and
therefore potentially high precision in spectroscopic mea-
surements. Experiments can be performed with a fixed
and eventually very small number of particles — finally
opening the possibility to study the quantum behaviour
of a single atom. In combination with techniques to cool
the stored particles, traps have become the source of new
states of matter like strongly coupled crystalline plasmas,
de Broglie waves of long coherence length and Bose-
Einstein condensates of weakly interacting gases.

Traps for neutral atoms [1–3] can be constructed us-
ing inhomogeneous electric or magnetic fields. The field
shifts the atomic energy levels and the spatial dependence
of this shift leads to a force acting on the center of mass
motion of the atom. Since the ground state is always low-
ered by an external perturbation, a ground state atom
will be attracted by a field maximum, it is a so-called
high field seeker. Some of the higher lying states will be
raised by the perturbation, and atoms in these levels con-
sequently are low field seekers, i.e. attracted by a field
minimum. Maxwell’s equations do not permit a maximum
of the modulus of a static electric or magnetic field in a
region void of charges or currents [4]. This makes the re-
alisation of a static electromagnetic trap for ground state
atoms impossible. It can even be shown that no combi-
nation of static electric, magnetic and gravitational fields
can produce a stable trap for ground state atoms [5].

While a maximum of the modulus of the electromag-
netic field is not allowed by Maxwell’s equations, a mini-
mum can easily be generated. The magnetic or the elec-
tric quadrupole field — realized using two coils in anti-
Helmholtz arrangement or the three hyperbolic electrodes
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of the Paul trap, respectively — possesses a point of van-
ishing field strength at the center. Consequently, it can
be used to construct an electrostatic [6] or a magneto-
static trap [7] for atoms in low field seeking excited states.
These traps are unstable against spontaneous decay of the
excited state. Even if the atoms are in metastable states
with long lifetime, they can suffer from inelastic exother-
mal collisions. Since the energy released in such a col-
lision is at least of the order of magnitude of the trap
depth, this leads to a loss mechanism that limits the stor-
age time. Magnetic traps for low field seekers have been
used with great success in the experiments demonstrating
Bose-Einstein-condensation (BEC) of rubidium, lithium
and sodium vapor (see [1] and references therein). In the
case of cesium, however, the exothermal collisions have
prevented the attainment of BEC in a static magnetic
trap [8].

Traps for high field seekers can only be realized using
time dependent fields. A magnetodynamic trap has been
proposed to achieve BEC in hydrogen [9] and has been
tested experimentally with laser cooled cesium atoms [10].
A nearly homogeneous static field was superposed on an
inhomogeneous oscillating field to create — similar to the
Paul trap for ions — a saddle point of the potential that
periodically interchanges the stable and unstable direc-
tion. This principle will also be used in the electrody-
namic hexapole trap proposed here. Magnetic traps make
use of the linear Zeeman effect and are generally deeper
than electric traps, that interact with atoms in the ground
state only via the quadratic Stark effect. Strong alter-
nating electric fields, however, are easier to produce than
their magnetic counterparts, since in the latter case one
has to worry about losses through ohmic resistances and
eddy currents. A further advantage of an electric trap is
that in the scalar Stark potential all Zeeman sublevels of
the ground state can be trapped and remain degenerate.
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Fig. 1. Schematic of the electrodynamic trap resulting from
the superposition of an alternating hexapole field and a static
homogeneous field. The trap, shown here in a cut, is rotation-
ally symmetric around the vertical z-axis. Gravity is assumed
to act in negative z-direction. If the axial field of the hexapole is
parallel to the homogeneous field, the quadratic Stark potential
is radially stable, if the two fields are antiparallel, the potential
is axially stable. Changing the sign of the hexapole potential
periodically leads to dynamic stabilisation of the trapped atom.

This should make it possible to apply laser cooling meth-
ods, that often lead to a redistribution of the population
between the Zeeman sublevels. Dynamic stabilisation of
high field seekers in an electric field was first discussed by
Shimizu and Morinaga [11,12] and an experiment demon-
strating the focussing of a beam of metastable neon atoms
using an oscillating electric two-phase quadrupole field has
been performed [13].

The interaction of the atom with the electric field is

given by the Stark potential USt ∝
→
E2, one Cartesian

component of the force by Fx ∝
→
Ed
→
E/dx. To obtain a

force of alternating sign one has to change the sign ei-

ther of
→
E or of d

→
E/dx, but not both signs simultane-

ously. This can be done by superposing a homogeneous
static field and an inhomogeneous alternating field. For
a three-dimensional trap, the most convenient inhomoge-
neous field can be looked for among the spherical multi-
poles. Using a singly periodic alternating field, the lowest
order multipole, that fulfills the requirements of a stable
electrodynamic trap, is the hexapole. The use of potentials
with more complicated temporal dependences creates fur-
ther possibilities. The trap proposed in [11,12] consists
of three dipoles connected to an alternating three-phase
voltage.

2 Equations of motion

The rotationally symmetric electric hexapole field is pro-
duced by two ring electrodes and two endcaps, each of
which is connected to one of the rings. A cut through the
xz-plane shows six poles (cf. Fig. 1). If the voltage U3 is
applied between the two pairs of electrodes, the electric

potential is given by

φ3(x, y, z) =
U3

4z3
0

(2z3 − 3zx2 − 3zy2) , (1)

where 2z0 is the distance between the endcaps. To this we
add a homogeneous field in the z-direction, generated by
the dipole potential

φ1(z) =
U1z

2z0
. (2)

We suppose that the voltage U1 is also applied across the
characteristic length 2z0 of the hexapole. Furthermore, we
introduce a weak quadrupole potential φ2. This is not nec-
essary for the functioning of the trap, but it opens the pos-
sibility to exert a constant force on the atoms, which can
be used to balance the effect of gravity. The quadrupole
potential is given by

φ2(x, y, z) =
U2

4z2
0

(2z2 − x2 − y2) . (3)

From the sum of the potentials one can easily calculate
→
E

and E2. From the Stark potential USt = −αE2/2, where
α denotes the static polarisability, the forces on the atom
are derived:

Fx =
α

2

(
U2

2x

2z4
0

+
9U2

3 (x3 + xy2)

4z6
0

−
3U1U3x

2z4
0

)
(4)

Fy can be obtained by exchanging x against y in the ex-
pression for Fx. The force in the z-direction reads

Fz=
α

2
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3 z
3
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0
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z4
0
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2

z5
0

)
. (5)

Let us consider Fx first: The first two terms are always
defocussing, independent of the sign of the voltages. They
are, however, negligibly small with respect to the third
term under the assumptions

(x2 + y2 + z2)� z2
0 and U2 � U1 ≈ U3 . (6)

We assume here that the atom is close to the center of the
trap and that the quadrupole contribution is much smaller
than the dipole and the hexapole. If an alternating voltage

U3 = U30 sinωt , (7)

is used for the hexapole potential, the third term in Fx
gives a force of alternating sign that is linear in x. This
force is responsible for the stabilisation of the trap. In the
expression for Fz the dominant contribution that gives
rise to the dynamic trap is the fourth term, proportional
to U1U3. The first two terms are again defocussing, but
small under the assumptions (6). The third term ∝ U1U2

produces the constant force for the compensation of grav-
ity. For this purpose the voltage U2 has to be adjusted to
the value

U2 =
2mgz3

0

αU1
(8)
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which, as we will see, is much smaller than U1 for typi-
cal parameters. The last term ∝ U2U3 also creates a dy-
namic trap, but one that is anharmonic. However, since
the quadrupole contribution is much weaker than the dipole
(U2 � U1), this force is negligible.

Concentrating on the dominant terms ∝ U1U3 due to
the superposition of homogeneous field and hexapole, the
equation of motion for the z-component is

∂2z

∂τ2
− 2qz · sin 2τ · z = 0 , (9)

with dimensionless parameters

τ =
ωt

2
and qz =

3αU1U30

mω2z4
0

. (10)

This is the well-known Mathieu differential equation, which
possesses stable solutions as long as |qz| < 0.907. The
equations of motion in x- and y-directions are of anal-
ogous form with qx = qy = −qz/2. The dynamics of a
trapped atom at the center of the hexapole trap follows
the same laws as that of an ion in a Paul trap.

If q2
z � 1 one can — like in radiofrequency ion traps

— use an adiabatic approximation [14], that separates the
dynamics of the trapped particle into the driven micro-
motion at frequency ω and the slower secular motion in a
static pseudopotential. The result for the pseudopotential
of the hexapole trap is

Ψ(x, y, z) =

→
F 2

4mω2
=

9α2U2
1U

2
30

64z8
0mω

2
(x2 + y2 + 4z2) (11)

=
1

64
q2
zmω

2(x2 + y2 + 4z2) . (12)

The secular motion is a harmonic oscillation with frequen-
cies ωx,y = qzω/2

√
8 in the radial and ωz = qzω/

√
8 in

axial direction.

3 Experimental considerations

The atomic parameter that determines the steepness of
the pseudopotential is the ratio of the square of the po-
larisability over the mass. Of all ground state atoms, this
quantity is maximal for lithium, which consequently is the
most favorable candidate for an experimental realisation
of the hexapole trap. Possible parameters are given in the
first column of Table 1.
To judge the stability of the trap, the complete equations
of motion were integrated numerically, including the defo-
cussing terms in equations (4) and (5), with gravity com-
pensated by the choice of U2 according to equation (8). A
typical trajectory calculated with the parameters for 7Li
from Table 1 is shown in Figure 2. It shows the familiar im-
age of a solution of the Mathieu equation for high q values.
The example of lithium has been chosen to obtain a steep
trap with high oscillation frequencies. The second colum
of Table 1 shows, using the cesium atom as an example,
that the relatively easily polarisable alkali atoms can also

Table 1. Possible experimental parameters for hexapole traps
for lithium, cesium, hydrogen and silver. Atomic polarisabili-
ties α from ref. [16]. A distance 2z0 = 2 mm between the axial
electrodes has been assumed in all examples. vmax: maximal
velocity of a stably trapped atom at the center of the trap.

7Li 133Cs 1H 107Ag

α [10−39 Jm2/V2] 2.70 6.63 0.0742 0.87
U1 [kV] 8 4 8 8
U2 [V] 10.5 163 55.0 50
U30 [kV] 4 2 4 4
ω/2π [Hz] 800 200 450 150
qz 0.884 0.458 0.535 0.53
ωz/2π [Hz] 308 32 88 28
Ψ(0, 0, z0/2)/kB [µK] 260 87 4 50
vmax [m/s] 0.40 0.076 0.21 0.061

Fig. 2. Trajectory of an atom in the hexapole trap, projected
on the xy- and the xz-planes, respectively (parameters for 7Li
from Table 1).

be trapped at lower voltages. In the experiment by Cornell
et al. on the magnetodynamic trapping of cesium [10] os-
cillation frequencies of 4-8 Hz and a trap depth of 12 µK
have been achieved at ω/2π = 60 Hz with 100 G field
amplitude. These values can easily be surpassed with the
proposed electrodynamic trap. The axial oscillation fre-
quencies ωz given in Table 1 have been determined from
the numerical simulation. They agree well with the pre-
diction of the adiabatic approximation, except in the case
of lithium, where qz is too high for this approximation to
give precise results. The radial frequency is always lower
than the axial frequency by a factor of two. As a mea-
sure of the trap depth the value of the pseudopotential
Ψ(0, 0, z0/2) is included in the table. The last row of the
table contains the numerically calculated maximal veloc-
ity an atom may have at the center of the trap in order to
remain on a stable trajectory and not hit the electrodes.
This quantity is important to estimate the possibility of
loading the trap with cold atoms. For lithium the value
corresponds to five times and for cesium to twenty times
the respective recoil velocity ~k/m for laser cooling on the
D2 line. This shows that the hexapole trap can readily be
loaded with cold alkali atoms from a magnetooptical trap
or optical molasses. The trap parameters for hydrogen (a
light atom of low polarisability) and silver (average mass
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Fig. 3. Practical electrode configuration for the hexapole trap,
consisting of two disks and two rings (rotationally symmetric
around the vertical axis). The oscillating hexapole potential is
coupled capacitively to keep the two high voltage supplies for
U1 and U3 separated. Radii and distances have been chosen
such that the alternating potential has no linear contribution
(distance between the disks = disk diameter = 2z0, thickness
of the rings = distance between the rings = 0.2z0, inner ring
diameter = 1.45z0). The voltage divider R1/R2 serves to gen-
erate the quadrupole potential U2 by means of a small shift
of the DC potential of the rings with respect to the dipole
potential.

and average polarisability), that are included in the ta-
ble show that these less easily polarisable atoms can be
trapped too. However, the very cold atoms required to
load the trap are not so easily available for these species.
The choice of trapping parameters is simply given by the
requirement for qz to stay within the range 0.4-0.9. The
parameters can easily be rescaled: for example, z0, U1 and
U3 can be reduced by a common factor while ω is increased
by the same factor.

For a practical realisation of the hexapole trap one can
not use the electrode setup shown in Figure 1, since the
static homogeneous field would be strongly shielded by
the endcaps of the hexapole. Figure 3 shows a simple ar-
rangement consisting of only four rotationally symmetric
electrodes (two disks and two rings) that generate all three
field components: dipole, quadrupole and hexapole. Radii
and distances (cf. caption of Fig. 3) have been chosen such
that the oscillating part of the potential does not possess
a linear term, and consequently does not contribute to the
homogeneous field. The lowest order and dominating con-
tribution in a multipole expansion of this potential will
then be the hexapole. Since the electrodes do not exactly
match the equipotential surface of a hexapol (cf. Fig. 1)
the potential also contains small contributions from odd
higher order multipoles. For storage close to the center of
the trap these contributions are not critical and the results
derived above for the pure hexapole potential remain ap-
plicable. The static dipole field, applied between the two
disks, is slightly shielded by the two rings in the center
of the trap. This has to be compensated for by a 20% in-
crease in U1. To generate the quadrupole component, the
two rings are connected via inductances to put them on a
common static potential. Using an adjustable voltage di-
vider R1/R2, the DC potential of the rings can be shifted
somewhat out of the center of the dipole potential. This
creates the small quadratic contribution of the quadrupole
potential. The whole configuration has been designed to

keep the peak field strength between the electrodes below
100 kV/cm for the parameters of Table 1, in order to avoid
electrical breakdown.

Note that the stability of the trap is independent of
the sign of the polarisability α. This means that low field
seekers can be trapped as well as high field seekers. One
can even change the modulus or the sign of α while the
atoms are trapped. This opens the possibility to induce
transitions between energy levels that have different po-
larisabilities. As long as the lifetime of the excited state
is much smaller than the period of the trapping field and
as long as the population of this state remains small com-
pared to that of the ground state, the stability of the trap
remains unaffected, even if the qz parameter of the excited
state lies outside the stability limit. If these conditions are
not fulfilled, the particles are transferred nonadiabatically
between two pseudopotential wells of different depth and
can gain or lose energy during these transitions. Especially
if the sign of α changes, the phase relation between the
movement of the atom and the alternating field is dis-
turbed and energy is transferred from the time-dependent
trap potential to the kinetic energy of the atoms. In the
absence of cooling, this process will finally heat the atoms
out of the trap. However, since optical transitions can be
induced, it should be possible to apply laser cooling meth-
ods [1] like polarisation gradient cooling or Raman cool-
ing and damp the motion of the trapped atoms. As the
Zeeman sublevels keep their degeneracy in the purely elec-
trical hexapole trap, these methods are well applicable.

Some cooling of the trapped atoms will also be required
to trap a larger number of atoms at high density. Like
electrodynamic ion traps, the hexapole trap is a conserva-
tive trap only for noninteracting particles or for a single
particle. In the presence of collisions between the trapped
atoms, these will gain kinetic energy from the oscillating
trap potential [9], a phenomenon well known as radiofre-
quency heating in ion traps [15]. Fortunately, this heating
mechanism is much weaker for neutral atoms with their
small collision cross-sections than for ions that interact via
the long range Coulomb force. At the typical density in a
magnetooptical trap (some 1010/cm3) the collision rate is
only a few Hz, so that already a weak cooling power of a
few µK/s will be sufficient to stabilize the atoms.

I thank J. Reichel, C. Salomon and H. Walther for helpful
discussions.
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